Computational approaches toward the design of pools for the in vitro selection of complex aptamers.

نویسندگان

  • Xuemei Luo
  • Maureen McKeague
  • Sylvain Pitre
  • Michel Dumontier
  • James Green
  • Ashkan Golshani
  • Maria C Derosa
  • Frank Dehne
چکیده

It is well known that using random RNA/DNA sequences for SELEX experiments will generally yield low-complexity structures. Early experimental results suggest that having a structurally diverse library, which, for instance, includes high-order junctions, may prove useful in finding new functional motifs. Here, we develop two computational methods to generate sequences that exhibit higher structural complexity and can be used to increase the overall structural diversity of initial pools for in vitro selection experiments. Random Filtering selectively increases the number of five-way junctions in RNA/DNA pools, and Genetic Filtering designs RNA/DNA pools to a specified structure distribution, whether uniform or otherwise. We show that using our computationally designed DNA pool greatly improves access to highly complex sequence structures for SELEX experiments (without losing our ability to select for common one-way and two-way junction sequences).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Approaches Towards the Design of Pools for the In Vitro Selection of Complex Aptamers

To appear in RNA (rnajournal.org). Abstract It is well known that using random RNA/DNA sequences for SELEX experiments will generally yield low complexity structures. Early experimental results suggest that having a structurally diverse library which, for instance, includes high-order junctions, may prove useful in finding new functional motifs. Here, we develop two computational methods to gen...

متن کامل

A computational proposal for designing structured RNA pools for in vitro selection of RNAs.

Although in vitro selection technology is a versatile experimental tool for discovering novel synthetic RNA molecules, finding complex RNA molecules is difficult because most RNAs identified from random sequence pools are simple motifs, consistent with recent computational analysis of such sequence pools. Thus, enriching in vitro selection pools with complex structures could increase the probab...

متن کامل

In vitro RNA random pools are not structurally diverse: a computational analysis.

In vitro selection of functional RNAs from large random sequence pools has led to the identification of many ligand-binding and catalytic RNAs. However, the structural diversity in random pools is not well understood. Such an understanding is a prerequisite for designing sequence pools to increase the probability of finding complex functional RNA by in vitro selection techniques. Toward this go...

متن کامل

آپتامرها و کاربردهای بیولوژیکی-درمانی آنها

Aptamers are the artificial single-stranded DNA or RNA sequences (more recently, peptides) that fold into secondary and tertiary structures making them bind to certain targets with extremely high specificity. Aptamers were reported for the first time in 1990, a number of their unique features make them a more effective choice than antibodies. Aptamers typically generated through Systematic Ev...

متن کامل

Computational generation and screening of RNA motifs in large nucleotide sequence pools

Although identification of active motifs in large random sequence pools is central to RNA in vitro selection, no systematic computational equivalent of this process has yet been developed. We develop a computational approach that combines target pool generation, motif scanning and motif screening using secondary structure analysis for applications to 10(12)-10(14)-sequence pools; large pool siz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • RNA

دوره 16 11  شماره 

صفحات  -

تاریخ انتشار 2010